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Abstract:

A full-wave analysis of superconducting transmission

tine structures is presented. This approach avoids making any

simplifying assumptions regarding the strip thickness and the

electromagnetic wave inside the superconductor. The

propagation constant, as well as the attenuation constant, are

obtained rigorously by solving the eigen value problem

resulting from the discretization of the wave equations using

finite difference method. The corresponding eigen vectors are

the possible modes. The current distribution inside the

superconducting materials and the electromagnetic fields in the

structure can be easily obtained.

1. INTRODUCTION

Strip lines and microstrip transmission lines are

common waveguiding structures used in microwave and

millimeter-wave systems. Many fundamental electrical

parameters of the superconductor, such as the surface

resistance, conductivity, critical temperature, magnetic field

strength, and field penetration, can be determined by

measuring the propagation characteristics and the quality

factors of these devices [1]. Therefore, it is crucial to develop

an accurate numerical model to determine these electrical

parameters accurately from the measurements.

Previous research works have often been limited to

describe the transmission line characteristic in term of its

integrated quantities, and strip thickness is mostly treated by

an approximation of some kind [2]-[3].

In this paper, we present a complete model which can

be used for any of the transmission line structures, which

include high Tc superconducting material. This model

incorporates all the physical aspects, of the high Tc

superconductor materials through London’s equations. It also

satisfies all the electromagnetically required boundary

conditions in the structure using Maxwell’s equations. The

physical characteristics of the superconductor are blended with

the electromagnetic model by using the phenomenological two

fluid model. The fiiite difference method is used to implement

this model because it has a great deal of flexibility, and

equations may be derived directly from Maxwelt’s equations.

The complex propagation constant is calculated. The losses

inside the superconductor material are evaluated. The effect of

different London’s penetration depth on the wave propagation

characteristics is atso investigated.

2. THEORETICAL ANALYSIS

The two fluid model assumes that the electron gas in a

superconductor material consists of two gases, the

wperconducting electron gas, constituting from cooper or

electron pairs, and the normal electron gas.

J= J. + Js (1)

The following London’s equations describe the relation

between the superconductor current density and the fields [4],

aJ,_~E

7X - po)b’ (2)

VXJS = $ H
(3)

where ~ is the penetration depth inside the superconducting

materiat.

Maxwell’s equation,

vXH=jco&E+J (4)

when combined with eq. (l), (2) results in

V X H =jco&o$2sE (5)

where the complex strip relative dielectric constant % is

f

c. (1

1
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Here, we assume that the electrical properties of the

superconductor are isotropic. The negative dielectric constant

for the superconducting strip may be explained by the stored

electric kinetic ener~y associated with the superconductor

electrons pair motion. The eigen value problem can be solved

for the TMZ mode without loosing the generality of the
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method. The full wave analysis can be carried out by applying

the same procedure to the TEz mode, then combining both

modes together.

Assuming the waves propagate in the +Z direction with

a propagation constant y=ct+~, that is yet to be determined.

The resulting general wave equation, in case of nonuniform

dielectric constant, at each point over the structure is expressed

as follows,
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Y (7)

where h2= ~ + ~2~o&, subscript x and y stands for the x

and y directions, and p represents the value at any arbitrary

point in the structure.

The effect of the temperature, as well as the penetration

depth, on the performance of the superconductor transmission

line are also addressed. The dependence of the effective

penetration depth (k) on the temperature can be expressed as

follows [51,

mlL(T) = L(O) 1 : ‘1’2

c (8)

where X.(O) is the penetration depth at T=O, and the

conductivity dependence on the temperature is stated as,

(9)

where cr(Tc) is the conductivity at T=TC,

3. NUMERICAL APPROACH

The finite difference method is used to solve the

general wave equation for E.z. With the notation, as shown in

Fig. 1,

Ezij = Ez(iAx+jAy ) (lo)

i,j + 1

Fig. 1. ij and corresponding xy axis

Substituting in (7), and after some manipulation, we

get the following general fiite difference equation,

2
where ‘i~ = ‘2vo&ij ’72. The coefficients inserted are ONy

used at the interface between the different materials

constituting the structure. The discontinuities at the interface

are carefully handled to satisfy the matching conditions

without generating undesired numerical singularities. The

discontinuity in the field in the direction perpendicular to the

interface, as a result of different dielectric values at both side is

treated using the electric field-dielectric constant product. This

results in a fiiite difference scheme which is valid everywhere

in the transmission line structure. There is no need to impose

boundruy conditions anywhere inside the structure.

Using the even symmetry of the fundamental mode,

the numerical model is simulated over half of the strncture. A

perfect magnetic wall is inserted at the plane of symmetry. The

ground plane is represented by a perfect electric plane, for

simplicity. The open boundaries can be closed with perfect

conducting walls, either electric or magnetic. These walls

should be relatively far enough away from the strip that they

do not affect the final solution.

A non-uniform mesh is generated over the

transmission line cross-section. The numbers of patches are

increased in the area where high fields are expected. The

electric parameters are averaged over the patches lying at the

interface between different materials composing the structure.

The mesh is constructed such that all the interfaces and the

boundaries lie exactly on one side of a patch.

Fig. 2. Superconducting microstripe line
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4. RESULTS AND DISCUSSION

Numerical results are generated for the

superconductor microstripline, filled with a lossless dielectric

material with &d= 23, as shown in Fig. 2. The configuration

has the following dimensions: strip width W = 5000 pm,

substrate thickness d = 4500 pm, and superconducting strip t

= 1.0 ~m. The characteristics of the superconducting material

are as follows, penetration depth at T = O K is L(O) = 0.18

pm, the superconductor critical temperature, Tc = 100 K, and

the conductivity inside the normal electron gas at T = Tc equals

to tJn = 1(F S/cm. The results are calculated at two different

temperatures, the liquid nitrogen boiling point T =77 ~ and T

=89 K.

Fig. 3.
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The phase constant of the superconducting

microstripline as function of frequency, at T = O K, is shown

in Fig. 3. The results are verified by comparing them with the

phase constant of a microstripline with perfect conductors [6].

As expect@ the tsvo curves are close to each other. The phase

velocity of the superconducting structure is slightly larger than

that of the perfectly conducting structure due the internal

inductance of the wqxxconducting material.

The attenuation characteristics for the superconducting

microsrnpline at different temperatures are presented in fig. 4.

The attenuation increases with frequency. The attenuation also

increases with temperature as expected. The corresponding

phase constant and relative phase constant shift are shown in

Fig. 5. The propagating mode is a TMZ mode. The effect of

the superconducting material can also be observed in Fig.

5.The low dispersion of the superconducting transmission
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Fig. 4. Attenuation constant of Superconducting
Microstripline filled with Iossless
dielectric.
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Fig. 5. Phase constant of Superconducting
Microstripline filled with lossless
dielectric.

line is clear. The pementage change in the phase constant at T

= 77K and T = 89K is also depicted in Fig. 5. As the

temperature increases, the phase constant slightly increases.

Although, the phase constant shift is small, it is predicted by

our calculations.

To study the effect of different high Tc superconductor

characteristics on the line performance, structures with

different London’s penetration depths are investigated. All

other parameters are kept the same as before. The attenuation

and phase constants nt T = 77K are shown in Fig. 6 and Fig.

7, respectively. The increase in the attenuation constant with

the penetration deptih is due to the increase of the normal

electron current penetration in the material.’-- “-------’-”-

phase constant can be explained by the

1ne mmsiise m me

slow wave effect
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Fig. 6. Attenuation constant of Superconducting
Microstripline filled with iossless
dielectric at different penetration depth
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Fig. 7. Relative Phase constant of Superconducting
Mlcrostripline filled with lossless dielectric
at different penetration depth

resulting from the increase in the internal inductance associated

with the superconducting material. We believe that this is one

of the most accurate methods to obtain the dispersion

characteristics of a superconducting microwave structure.

5. CONCLUSION

A method for calculating the propagation

characteristics of superconducting microwave structures, by

formulating the eigen vatue problem that takes into account the

wave propagation inside the superconductor material, is

presented. This procedure is general, accurate, and yet

flexible. Results for the propagation characteristics of the

microstripline are demonstrated. Slow wave propagation is

observed along the microstrip line. The increase of the

attenuation with temperature and frequency is clearly shown.

Other characteristics of microwave superconducting lines are

also presented.
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