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Abstract:

A full-wave analysis of superconducting transmission
line structures is presented. This approach avoids making any
simplifying assumptions regarding the strip thickness and the
electromagnetic wave inside the superconductor. The
propagation constant, as well as the attenuation constant, are
obtained rigorously by solving the eigen value problem
resulting from the discretization of the wave equations using
finite difference method. The corresponding eigen vectors are
the possible modes. The current distribution inside the
superconducting materials and the electromagnetic fields in the
structure can be easily obtained.

1. INTRODUCTION

Strip lines and microstrip transmission lines are
common waveguiding structures used in microwave and
millimeter-wave systems. Many fundamental electrical
parameters of the superconductor, such as the surface
resistance, conductivity, critical temperature, magnetic field
strength, and field penetration, can be determined by
measuring the propagation characteristics and the quality
factors of these devices [1]. Therefore, it is crucial to develop
an accurate numerical model to determine these electrical
parameters accurately from the measurements.

Previous research works have often been limited to
describe the transmission line characteristic in term of its
integrated quantities, and strip thickness is mostly treated by
an approximation of some kind [2]-{3].

In this paper, we present a complete model which can
be used for any of the transmission line structures, which
include high T¢ superconducting material. This model
incorporates all the physical aspects, of the high T¢
superconductor materials through London's equations. It also
satisfies all the electromagnetically required boundary
conditions in the structure using Maxwell's equations. The
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physical characteristics of the superconductor are blended with
the electromagnetic model by using the phenomenological two
fluid model. The finite difference method is used to implement
this model because it has a great deal of flexibility, and
equations may be derived directly from Maxwell's equations.
The complex propagation constant is calculated. The losses
inside the superconductor material are evaluated. The effect of
different London's penetration depth on the wave propagation
characteristics is also investigated.

2. THEORETICAL ANALYSIS

The two fluid model assumes that the electron gas in a
superconductor material consists of two gases, the
superconducting electron gas, constituting from Cooper or
electron pairs, and the normal electron gas.

J=Ja+Js 6}
The following London's equations describe the relation
between the superconductor current density and the fields [4],

s _ 1
ot Mo’ (2)
VxJs=-1H

A (3)

where A is the penetration depth inside the superconducting
material.
Maxwell's equation,

VX H=jweE + J

Gy
when combined with eq. (1), (2) results in
V X H =joe R (5)
where the complex strip relative dielectric constant €s is
g = (1-—1 )-j""}
LTV ©)

Here, we assume that the electrical properties of the
superconductor are isotropic. The negative dielectric constant
for the superconducting strip may be explained by the stored
electric kinetic energy associated with the superconductor

electrons pair motion. The eigen value problem can be solved
for the TMz; mode without loosing the generality of the
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method. The full wave analysis can be carried out by applying
the same procedure to the TEz; mode, then combining both
modes together.

Assuming the waves propagate in the +z direction with
a propagation constant y=0+p, that is yet to be determined.
The resulting general wave equation, in case of nonuniform
dielectric constant, at each point over the structure is expressed
as follows,

2 2
hE d Ez (J__ aEz )] +
©2ogp | 0x2 X hZ 0x
a Ez J_ aEz + hZE =0
wzuoﬁp dy? a-y_(hz dy )] i N

where h2="Y2 + Q2LoE, subscript x and y stands for the x
and y directions, and p represents the value at any arbitrary
point in the structure.

The effect of the temperature, as well as the penetration
depth, on the performance of the superconductor transmission
line are also addressed. The dependence of the effective
penetration depth (A) on the temperature can be expressed as

follows [5],
M) = MO [1 {Tlc)r/z ®)

where A(0) is the penetration depth at T=0, and the
conductivity dependence on the temperature is stated as,

Ga(T) = Ga(Te) (Tl)“

where 6(T¢) is the conductivity at T=Tk.

9

3. NUMERICAL APPROACH

The finite difference method is used to solve the
general wave equation for E;. With the notation, as shown in
Fig. 1,

Eij = E,(1Ax+jAy ) (10)
ij-1
y
i-1,j i+1,j
i’j X
ij+1
Fig. 1. ijand corresponding xy axis
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Substituting in (7), and after some manipulation, we
get the following general finite difference equau'on .

1 (81+1" 1211"‘ )E21+1,_| +—— i1y Ty hl’J )EZI 1+
81-] h1+1,J 81 hl-l,_]
h? . h?
1 (81,_]+1 4y ) z1,j+l+—1- (81,31 21,] )Ezi,j-l +
1,_]+1 A 81 hl,_]l
h? g1 h?
h2 o1 (€1+1,J ij ) ( i-1j Nij )
N x? & h1+1,1 &j hl-l,_]
L] @i By (8"3’1 hi; ))] Eij=0
A 81 hl J+1 J hl,J 1
a1

where hiZJ = m2u°8ij +72. The coefficients inserted are only
used at the interface between the different materials
constituting the structure. The discontinuities at the interface
are carefully handled to satisfy the matching conditions
without generating undesired numerical singularities. The
discontinuity in the field in the direction perpendicular to the
interface, as a result of different dielectric values at both side is
treated using the electric field-dielectric constant product. This
results in a finite difference scheme which is valid everywhere
in the transmission line structure. There is no need to impose
boundary conditions anywhere inside the structure.

Using the even symmetry of the fundamental mode,
the numerical model is simulated over half of the structure. A
perfect magnetic wall is inserted at the plane of symmetry. The
ground plane is represented by a perfect electric plane, for
simplicity. The open boundaries can be closed with perfect
conducting walls, either electric or magnetic. These walls
should be relatively far enough away from the strip that they
do not affect the final solution.

A non-uniform mesh is generated over the
transmission line cross-section. The numbers of patches are
increased in the area where high fields are expected. The
electric parameters are averaged over the patches lying at the
interface between different materials composing the structure.
The mesh is constructed such that all the interfaces and the

boundaries lic exactly on onc side of a patch.
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Fig. 2. Superconducting microstripe line



4. RESULTS AND DISCUSSION

Numerical results are generated for  the
superconductor microstripline, filled with a lossless dielectric
material with €4 = 23, as shown in Fig. 2. The configuration
has the following dimensions: strip width W = 5000 pm,
substrate thickness d = 4500 pm, and superconducting strip t
= 1.0 um. The characteristics of the superconducting material
are as follows, penetration depth at T = 0 K is A(0) = 0.18
pm, the superconductor critical temperature, T¢ = 100 K, and
the conductivity inside the normal electron gas at T = T¢ equals
to 6p = 104 S/cm, The results are calculated at two different
temperatures, the liquid nitrogen boiling point T=77 K, and T
=89 K.
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Fig. 3. Propagation constant for Microstripline

filled with lossless dielectric.

The phase constant of the superconducting
microstripline as function of frequency, at T = 0 X, is shown
in Fig. 3. The results are verified by comparing them with the
phase constant of a microstripline with perfect conductors [6].
As expected, the two curves are close to each other. The phase
velocity of the superconducting structure is slightly larger than
that of the perfectly conducting structure due the internal
inductance of the superconducting material.

The attenuation characteristics for the superconducting
microstripline at different temperatures are presented in fig. 4.
The atienuation increases with frequency. The attenuation also
increases with temperature as expected. The corresponding
phase constant and relative phase constant shift are shown in
Fig. 5. The propagating mode is a TMz mode. The effect of
the superconducting material can also be observed in Fig.
5.The low dispersion of the superconducting transmission
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Fig. 4. Attenuation constant of Superconducting
Microstripline. filled with lossless
dielectric. .

6000 0.01
g

2 5000 [Phase constant } 0.008%

3 N 3

= 4000 ‘ \\ 0.006%

% / T= K] 8

£ 3000 “ __10.004%

/ T= 89K 2

E [ appe | [T=77K 2

2000 J- o 0.002%

T B

1000 0 :;

10 20 30 40 50 60 70 <
Frequency (Ghz)

Fig. 5. Phase constant of Superconducting
Microstripline filled with lossless
dielectric.

line is clear. The percentage change in the phase constant at T
= 77K and T = 89K is also depicted in Fig. 5. As the
temperature increases, the phase constant slightly increases.
Although, the phase constant shift is small, it is predicted by
our calculations.

To study the effect of different high T, superconductor
characteristics on the line performance, structures with
different London's penetration depths are investigated. All
other parameters are kept the same as before. The attenuation
and phase constants at T = 77K are shown in Fig. 6 and Fig.
7, respectively. The increase in the attenuation constant with
the penetration depth is due to the increase of the normal
electron current penetration in the material. The increase in the
phase constant can be explained by the slow wave effect
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at different penetration depth

resulting from the increase in the internal inductance associated
with the superconducting material. We believe that this is one
of the most accurate methods to obtain the dispersion

characteristics of a superconducting microwave structure.

5. CONCLUSION

A method for the propagation
characteristics of superconducting microwave structures, by
formulating the eigen value problem that takes into account the
wave propagation inside the superconductor material, is

calculating

presented. This procedure is general, accurate, and yet
flexible. Results for the propagation characteristics of the
microstripline are demonstrated. Slow wave propagation is
observed along the microstrip line. The increase of the
attenuation with temperature and frequency is clearly shown.
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Other characteristics of microwave superconducting lines are
also presented.
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